
Tradeo�s in Secure System Development: An Outline

Catherine Meadows

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC 20375

Abstract

In this paper we identify several areas in which the satisfaction of security requirements can

a�ect the cost and performance of a system, and describe what is known about tradeo�s in

these areas. We also show where these tradeo�s appear in the life cycle of a system, and show

how they are a�ected by di�erent kinds of security requirements.

1 Introduction

When designing a system of any magnitude, it is necessary to keep in mind that it must satisfy a

large number of requirements, some of which may be in conict with each other. In some cases it

may be necessary to trade o� the di�erent requirements against each other; in other cases it may

be possible to identify other system features that may be traded o� to resolve the conicts between

the two requirements. This is as true of security as it is of any other system requirement.

Tradeo�s in security can be complicated by the fact that a system may have a number of di�erent

security requirements that lead to demands that are themselves in conict with each other. Thus

the di�erent types of demands that di�erent types of security requirements may put upon a system

must be understood. Also, security requirements, as is true of other requirements, can lead to to

tradeo�s that a�ect the system at di�erent points of its life cycle. Thus, it is important to be aware

of the system's entire life cycle when identifying tradeo�s.

In this paper we give an overview of the tradeo�s involved in designing secure systems. We do

so from three points of view. The �rst is the di�erent types of security requirements a system may

have, broadly organized into con�dentiality, integrity, guarantee of service, and authentication. The

second is the di�erent points of in a life cycle of a system. The third is four major areas that we

have identi�ed as being the most likely places where tradeo�s will occur. These tradeo� areas are:

restrictions on communications, required communications, security management overhead, and a

system's interaction with its environment.

The rest of this paper is organized as follows. In Section 2, we give a brief taxonomy of system

security requirements. In Section 3, we give an outline of the life cycle of a secure system and

describe the sorts of requirements that arise at each point. In Section 4, we describe four major

tradeo� areas and disuss the tradeo�s that can occur in these areas. We also discuss the way these

tradeo�s a�ect the di�erent types of security requirements, and how they a�ect a system at each

point of its life cycle. In Section 5 we present our conclusions.

1



2 A Taxonomy of System Security Requirements

Con�dentiality

By con�dentiality we mean the requirement that a computer system prevent unauthorized access

to information. Con�dentiality requirements can cover a broad range, from protecting personal

data to separating data classi�ed at di�erent security levels.

Integrity

By integrity we mean the prevention of unauthorized modi�cation of data. Integrity can be thought

of as a dual to con�dentiality.

Prevention of Denial of Service

By prevention of denial of service, we mean the ability to keep hostile intruders from preventing

a system from performing its functions. Denial of service can be interpreted in the broad sense

as anyway an intruder can do to prevent a system from performing its functions, but it has also

been interpreted in the narrower sense (for example in [YG90, Mil94] of an intruder's preventing

a system from performing its functions by monopolizing resources. The denial-of-service attack in

the secure readers-writers problem discussed above is a classic example of such an attack.

Authentication

By authentication, we mean the ability of an entity to identify correctly an entity it is communicat-

ing with, and to identify itself to other entities. Authentication has not traditionally been thought

to be a separate requirement on the same level as the other three, but, as we move more an more

to large, distributed systems that must communicate through an untrusted medium, it is gaining

in importance.

Interactions Between Requirements

Each of the four types of requirements can be used in support of the other. For example, a system

that enforces con�dentiality may rely on access control lists to determine who is authorized to

access what data. These access control lists must be protected from unauthorized modi�cation,

thus giving rise to an integrity requirement. As another example, authentication in a network

usually requires the ability to demonstrate knowledge of a secret key. The secrecy of this key must

be protected, thus giving rise to a con�dentiality requirement.

The di�erent types of requirements can also be in conict with each other. For example, consider

the secure readers-writers problem. This problem arises in multilevel secure systems in which a

security kernel manages untrusted labeled subjects which are only allowed to read data at their

level or below. An untrusted subject cannot write data below its level, since it is not trusted not

to write sensitive information. Moverover, the ability of an untrusted subject to a�ect portions of

the system visible to subjects at a low level in restricted as much as possible, since such an ability

could be used as a covert channel by which Trojan Horse code in the high subject could signal

sensitive information to a low subject.

Now, consider the case in which a high subject is trying to read a low object and low subject is

trying to write it. Suppose that the high subject attempts to put a read lock on the object. If this

is visible to the low subject, then the high subject might be able to exploit this as a covert channel.

Thus, one solution to the problem for the high subject to relinquish its read lock whenever the low



subject wishes to write. This makes the high subject vulnerable to a denial-of-service attack, since

the low subject can prevent it from reading the low object by continually requesting to write it.

3 Requirements in a Secure System's Life Cycle

In this section we give the main points of a secure system's life cycle, and discuss the requirements

that are relevant to each point. By this we mean, not the requirements that are considered at each

point, but the requirements that a�ect the ability of that portion of the life cycle to be carried out.

System Design and Implementation

What is the cost of building the system? How long does it take to design and build? Does it take

any kind of special expertise that may be hard to �nd?

System Evaluation and Certi�cation

System evaluation and certi�cation can add a great deal to the amount of time it takes to develop

a secure system, and can greatly a�ect its cost. Thus, we also need to ask, not how long it takes to

develop a secure system, but how long it takes to evaluate and certify it. Does it clearly �t within

accepted security standards? Does it use techniques that have been used in other successfully

evaluated systems, or does it introduce new ones that may take longer to gain acceptance? Is the

argument for system security understandable or convoluted?

System Use

In this area we put the requirements that a system will have to satisfy when it is actually being

used. These include all performance, functionality, and reliability requirements. These also include

requirements on the amount of risk that is involved in using the system.

System Reuse and Maintenance

Any useful system will not only be used for its intended application, but for other applications

that may not be forseen. How exible is the system? Can it enforce a reasonable range of security

policies? If it is necessary to alter the system, can this be done without requiring a costly re-

evaluation of the system's security?

4 Tradeo� Areas

In this section we discuss four major tradeo� areas that we have identi�ed. A tradeo� area is

an aspect of the system connected with security that can a�ect tradeo�s between security and

other requirements depending on how it is handled or implemented. We have identi�ed four:

restrictions on communications, requirements on communications, security managment overhead,

and interaction of a system with its environment. We discuss them in more detail below.

4.1 Restrictions on Communications

By communication we mean, not only the passing of messages between entities, but any means

by which one entity can have an e�ect on another. Thus reading and writing are both considered

communication.



Restriction on communication can be used to support integrity, guarantee of service, and con�-

dentiality. We describe this in more detail below. We also describe some of the tradeo�s that may

arise.

Restrictions on Communication in Support of Integrity

The use of restriction on communications to support integrity is straightforward: unauthorized en-

tities are prevented from making modi�cations to data, and authorized entities may be only allowed

to make modi�cations in prescribed ways. An example of the use of restrictions on communications

to support integrity is that given by the Clark-Wilson model [CW87]. In this model the notion of

Constrained Data Items is introduced. A Constrained Data Item is one that can only be operated

on according to certain designated procdures. Procedures are divided into Integrity Veri�cation

Procedures and Transformation Proedures. Integrity Veri�cation Procedures are performed to verify

that the Transformation Procedures have been performed correctly. Thus the designation of Trans-

formation Procedures may be thought of as a restriction on communication, while the designation

of Integrity Veri�cation Procedure can be thought of as a required communication.

Restrictions on Communication in Support of Guarantee of Service

A means by which restrictions on communication can be used to support guarantee of servies was

described by Yu and Gligor in [YG90] and further developed by Millen [Mil92, Mil94]. In [YG90]

Yu and Gligor apply the notion of user agreements to the denial of service problem that arises when

di�erent users compete for the same resource. An example of such a denial of service problem is the

secure reader-writer problem that we discussed earlier. A user agreement describes the behavior

a service use must conform to in order to be guaranteed the use of the service. If the user does

not obey the agreement, then it can be denied the service. A user agreement would typically rule

out behavior that would cause denial of service to others, such as the low's keeping its read lock

on the data in secure reader-writer problem discussed earlier. Note that such user agreements

might worsen the performance of a system in particular cases in which a user could have violated

that agreement without denying the service to others, but with reducing the risk of unacceptable

performance.

Restrictions on Communication in Support of Con�dentiality

Restrictions on communication in support of con�dentiality at �rst look very straightforward: an

entity should not be allowed to read data it is not authorized to see. For systems that are supposed

to o�er an extremely high degree of data protection, such as multilevel systems which are intended

to protect data classi�ed at di�erent security levels, the requirements can be much more stringent

and present new restrictions on communication. According to the Trusted Computing System

Evaluation Criteria (TCSEC) [DoD83], code must be divided into the Trusted Computing Base,

which is charged with enforcing the security policy, and untrusted code. The untrusted code

is usually constrained by some form of the Bell/LaPadula model [BL76], in which an untrusted

process is assigned a security level and is allowed only to read data at its level and below, and only

to write data at its level or above. The reason for the latter is because the untrusted process is not

trusted not to copy highly sensitive data down to a less sensitive repository. This \no write-down"

requirement may be further restricted for integrity reasons.

Restrictions on communications in multilevel systems become even more strict as the data

protected becomes more sensitive and the risks posed leakage or disclosure become greater. At this

point, it also becomes necessary to guard against the exploitation of covert channels. These are



communication channels be means of which an untrusted process running at a high security level

can pass sensitive data to an untrusted process at a low security level making use of an e�ect the

high process has on the system that is visible to the low process.

The easiest way of closing a covert channel is to partition all system resources. This of course

has a very negative e�ect on system performance. Thus other methods have been developed, such as

adding noise to a channel by making a shared resource unavailable from time to time, that can have

variable e�ects on system performance, depending on the degree to which one wants to reduce the

capacity of the channel. A number of studies documenting the tradeo�s between performance and

capacity reduction have appeared in the literature. These include empirical studies that measure

the results of applying various techniques on implemented channels [BCG+94], and studies that

use information theory to compute the capacity of channels that may be a�ected by a number of

di�erent parameters [Mil87, TG88, Mos91, Gra93].

Restrictions on communication can have e�ects on other aspects of a system than its perfor-

mance. They can also a�ect the availability of information. It may often happen that information

is misclassi�ed, or that it becomes necessary to prepare sanitized versions of sensitive documents.

Since the sanitized documents are necessarily prepared using software that has read access to the

original document, they originally exist at the higher security level, and must be downgraded. But,

how we can be sure that some Trojan Horse code embedded in the software that produced the

document didn't encode sensitive data in the sanitized document? For example, in [KM92] Kurak

and McHugh show how to embed information in visual data in a way that is undetectable by hu-

man review. Thus it is clear that, although it may sometimes by necessary, downgrading should

be treated very cautiously, and the tradeo� between con�dentiality and availability of data should

always be kept in mind.

A third way in which restrictions on communication can a�ect a system is in the integrity and

consistency of the data. For example, consider the oft-cited example of the plane with two types

of cargo, one classi�ed and one unclassi�ed, and a limit on how much weight the plane can carry

[SD86]. If the user entering the unclassi�ed cargo is told exactly how much weight it available, and

if the total limit is unclassi�ed, then he or she can tell exactly what the weight of the classi�ed

cargo is. Even if the total limit is not revealed, the available weight parameter still has the potential

of being used as a covert channel. It is possible to close this channel and still maintain integrity by

allowing �xed maximum weights for both classi�ed and unclassi�ed cargo, but this has the possible

e�ect of preventing the aircraft from being used to its maximum capacity. Thus there is a three-way

tradeo� between integrity, con�dentiality, and performance.

4.2 Required Communications

If a system is distributed, so that some communication between components takes place in a hostile

environment that may include passive or active eavesdroppers, than additional communications

may be required in order to authenticate various components of the system to each other and to

distribute cryptographic keys so that components can communicate securely. Traditional low-cost

solutions such as passwords do not provide su�cient protection in such an environment; an intruder

can simply read the password as it goes across the communication channel and use it to gain access

to the system. In order to gain even a reasonable degree of security, some use of encryption, both

for secrecy and authentication, is required. This means that protocols for key distribution and

authentication need to be introduced that can increase the burden on a system in a number of

ways.

In general, there are three ways in which the introduction of cryptographic protocols for au-

thentication and secrecy can a�ect system performance. One of these is the number or length of



messages. A mutual authentication protocol involves at least three messages, for example. A key

distribution protocol will require �ve or six, or more depending upon the application involved. The

second added cost is the expense of performing the encryption operation itself. The third added cost

is the overhead required to manage, guard, and generate cryptographic keys and authentication in-

formation. A cryptographic authentication system must make the use of one or more authentication

servers whose job it is to provide the information that parties using the system need to authenticate

each other, as well possible to generate keys that will be used for secure communication.

Tradeo�s between security and performance in this area are not necessarily clear-cut, but in

general there is some correlation between the number of messages used in an authentication protocol

and the degree of security that is achieved. In [Gon93] a study of several kinds of protocols

describing the degree of security of each kind together with the number of messages needed to

achieve it makes this tradeo� explicit.

It is possible to trade o� the various performance costs of secure communication against each

other in some cases. The use of public key cryptography can greatly reduce the amount of man-

agement overhead needed. When single key cryptography is used, the authentication server must

know a master key for each principal, which must be kept secret. Any response to a request to

have a session key delivered to a principal must be responded to by a message encrypted with that

principal's master key. On the other hand, if public key cryptography is used, only the princi-

pals' public keys, which do not need to be kept secret, need to be known. It is possible even for

the authentication server to go \o�-line" by providing each principal a certi�cate signed with the

server's private key that contains that principal's name and public key as well as any other relevant

information. However, public-key cryptography is usually more computationally expensive than

single-key, enough so that performance can be visibly e�ected by its use. Thus in this case we are

trading o� performance costs against key management overhead costs.

There are other required communications besides those of authentication. All secure systems

require keeping some sort of audit record, so that security violations can be detected and repaired.

This requires that system activities be recorded in an audit log, thus presenting the system designer

with a set of required communications. Also, when access control is used, requests for accesses must

be presented to a reference monitor that decides whether or not the access can be granted, giving

another example of a required communication. Usually, these added communications do not a�ect

system performance, except, when they take in the context of a distributed system, in which case,

not only do the same authentication tradeo�s that we have discussed above arise, but so do some

others connected with maintaining consistency and timeliness of audit and access data. We will

discuss this in more detail in the next section.

4.3 Security Management Overhead

So far we have restricted ourselves to the study of security as it a�ects communication within a

system. In this section we consider the cost of the overhead that arises from the security mechanisms

themselves. There are a number of ways in which security management overhead can a�ect a system.

These include the performance impact of access checking, the performance impact of audit trail

analysis, the time and cost of developing and evaluating the security mechanisms, and the degree of

di�culty of modifying the system without a�ecting the security mechanisms. We discuss all these

below.



Performance Impact of Audit Trail Analysis

An audit trail contains information that can be vital to the security of a system. Assuming that the

security of auditing mechanism has not been breached, the audit trail will contain information that

will be useful in identifying security violations and attempted security violations. The problem,

of course, is in �nding this information in a huge audit trail consisting largely of innocuous data.

Although intrusion detection by audit trail analysis is an active �eld of research, this is a problem

that is still unsolved. Thus one must take into account the tradeo�s between the amount of

information that can be gained from audit trail analysis and the negative performance impact a

more thourough analysis will have.

Performance Impact of Access Checking

In a secure system, each access control must be checked and only allowed if it is authorized. In

cases in which the entity performing the access control check is on the same machine as the data

or programs being accessed, performance does not seem to be greatly a�ected. But, if the access

checker and the data are on di�erent machines, it will probably be necessary to use cryptography

and authentication protocols to ensure the identity of the entity requesting the checks, the entity

performing the checks, and the entity that is being accesses. This can have a negative e�ect on

system performance.

There are several ways in which tradeo�s can be introduced to increase performance in this case.

One is to use public-key cryptography and have the authorizing entity produce certi�cates signed

with its private key that give other entities various rights. These decrease communication costs,

but at the cost of making it di�cult to revoke access. This can be in part be o�set by having the

certi�cates expire and reissued periodically, thus introducing a tradeo� between the inconvenience

of reissuing certi�cates and the possible threat to security of being unable to revoke them in time.

Another way to help performance is to distribute access control authority so that access check-

ing could be done at a number of points in the system. There are several ways this could be

implemented. One would be to allow more than one access control point to grant or deny access

to the same entity. This gives the greatest availability, but at the cost of possible inconsistency

between access control points. Another solution is to grant di�erent domains to each access con-

trol point. These access control points are in turn governed by access control points that mediate

between domains. This may be done several times, so that a hierarchy is formed. This improves

performance within a domain, but has the potential of worsening it between domains, since the

hierarchy must be traversed whenever such an access is granted.

System Development and Evaluation

In the previous sections we talked about the e�ect security management overhead can have on

performance. But it can have an even greater e�ect on system development and evaluation. System

development and evaluation time is the greatest hidden cost of a secure system. In order for a secure

system to be usable as such, it must not only be secure, it must be believed to be secure. But often

the work required to provide such assurance can add a signi�cant to the development time and

expense of a system. The extended time necessary for evaluation can have a hidden negative e�ect

on system performance; often system performance su�ers not as a direct result of implementing

security mechanisms but because the system evaluation takes such a long time that the latest means

for improving system performance are not used, simply because they were not available at the time

the system was built.



There is often a direct tradeo� between complexity of assurance and restrictions on commu-

nication. Earlier we noted that the TCSEC mandates the division of a system into a Trusted

Computing Base which is charged with enforcing the security policy, and untrusted code which is

constrained by the security policy. This was somewhat of an oversimpli�cation: the TCB contains

more than the part of the system charged with enforcing the policy. It also contains code that is

not constrained by the policy (for example, the restrictions on communication given by the Bell-

LaPadula model). Thus, code in the TCB may have the ability to read and write at all security

levels. However, it is \trusted" not to cause any harm, that is, not to leak data from one security

level to a lower or incomparable one. This trust is a result of careful design and evaluation. Thus,

introducing trusted code will increase system development and evaluation time, but it may also

improve performance by removing restrictions on necessary functions.

There are several strategies for reducing the amount of labor involved in providing assurance.

One, of course, is to keep the size of the part of the system charged with enforcing the security

policy as small and well-structured as possible. This is a well-known principle, that is used as

the basis of the TCSEC. Another, perhaps less well-known strategy, is to limit the kinds of secure

systems that can be developed. The reasoning behind this strategy is that, if only certain kinds

of systems can be developed, then the techniques for securing them and assuring that the security

is adequate will become well enough understood so that they can be applied in a timely fashion.

This, for example, was the strategy behind the TCSEC, to only allow a small number of classes of

secure systems that could however be used in a wide variety of applications [Pot94]. This approach

of course has the danger that the limits may be so severe that it is not possible to build compliant

systems that enforce necessary security requirements. This indeed is a complaint that is often made

against the TCSEC; thus the newer criteria, such as the European ITSEC [ITS91] generally provide

more exibility for the designer. However, this greater exibility has the potential of increasing the

amount of work needed to provide assurance; decisions that were hardwired in the more restricted

approach now must be justi�ed.

Another approach, recommended by Sterne et al. in [SBT94] is to \spread out" assurance so

that multilevel security can be enforced by compenents that o�er di�erent degrees of assurance.

Sterne et al. propose the use of Controlled Application Sets that are intended to be trusted to not

to the same extent as a TCB, and whose behavior is constrained by the TCB. One of the purposes

of a CAS would be to contain programs that are reasonably certain to not to contain hostile Trojan

Horse code that would attempt to exploit covert channels to leak sensitive information. Thus a

member of a CAS could be safely allowed to access sensitive information even in a system which

is known to have covert channels. In this case the proposes technique has not seen enough use for

us to determine what the exact tradeo�s would be, but at the very least there appears to be a

tradeo� between the amount of code that would have to be assured, and the degree of work that

would need to go into assuring the individual pieces.

System Reuse and Modi�cation

One of the biggest obstacles to secure system reuse is the di�culty of modifying security mechanisms

without having to undergo a lengthy re-evaluation. For example, introducing new trusted code into

the TCB generally requires a complete re-evaluation of the TCB. This is to be avoided at all costs.

One method for avoiding this problem is to use a layered TCB approach, or TCB subsetting [SS87].

In such an approach additional security functionality is built on top of the original TCB and is

considered \untrusted" by the original TCB. Thus the original TCB is not modi�ed and does not

have to be re-evaluated. An example would be a multilevel secure database management system

in which mandatory access control (MAC) protecting data classi�ed at di�erent security levels is



supplies by the underlying operating system, while discretionary access control (DAC) is provided

by the by database management system itself. This is necessary since the DAC o�ered by the

operating system protects only �les, not tuples or relations and thus is not �ne-grained enough for

the purposes of a DBMS. Guidelines for implementing TCB subsetting are given in the Trusted

Database Interpretation of the TCSEC [Nat91]. We note that Sterne et al.'s Controlled Application

Sets discussed in the previous section also have much of this avor.

There is a tradeo� involved in this approach, however. In general, although not always, the

degree of assurance o�ered by the higher levels of the TCB is less than that o�ered by the lower

layers. In the case of the database management system example, the assurance of the DBMS's DAC

is not as high as the assurance of the TCB's DAC. Thus, this approach is usually recommended

for cases in which di�erent security goals require di�erent degrees of assurance.

4.4 Environment

The environment in which a system will operate can have a major impact on its security require-

ments. A low-risk environment will require a less secure system, and thus reduce many of the costs

we have discussed above. It is also possible to reduce risk, not by changing the environment, but by

putting restrictions on the way the system interacts with the environment, that is, by decreasing

the functionality of a system. To give some examples, consider an ATM system which users can

only use to �nd out the size of their bank accounts versus one in which users can also withdraw

cash and transfer money from one account to another [LL85], or consider a system which contains

data classi�ed at only one security level versus a system that protects data classi�ed at di�erent

security levels.

The degree to which risk can be traded o� against functionality and environmental restrictions

is not that well understood, but in some special cases rules of thumb have been worked out. In

general, it is understood that, the less functionality that a system o�ers, and the more restricted

the environment, the less security functionality and assurance is required, This is the idea behind

much of the work on risk analysis for security, and it has also been codi�ed for use in deciding what

TCSEC rating is necessary for a system. For example DoD Directive 5200.28 [DoD88] provides

guidelines for the TCSEC rating required based on the range of security levels of data, and the

range of user clearances; the greater the range of security classi�cations or clearances, the higher

the TCSEC rating required. In other words, the greater the security functionality required, the

greater the degree of assurance required. The work of Landwehr and Lubbes [LL85] takes this

approach even further by including risk factors such as the local processing capability available

to the user (e.g., programmable terminals versus �xed-function interactive terminals), the type of

communication paths, and the capabilities the system gives to the user (e.g., transaction processing

versus full programming). All of these risk factors involve adding more functionality to a system.

Thus in this case the tradeo�s are between functionality and risk. When risk is increased the

increased cost appears in the necessity for greater system assurance.

5 Conclusion

In this paper we have looked at the tradeo�s invoved in secure system development from three

points of view: types of security requirements, points in the life cycle of a system, and areas in

which tradeo�s are most likely to occur. We have given some examples of some of the more common

tradeo�s, and we have shown how, when investigating tradeo�s, it is important to have the entire

life cycle of a system in mind.



References

[BCG+94] P. K. Boucher, R. K. Clark, I. B. Greenberg, E. D. Jensen, and D. M. Wells. Toward

a Multilevel-Seucre, Best-E�ort Real-Time Scheduler. In Proceedings of DCCA4, pages

33{45. January 1994.

[BL76] D. E. Bell and L. LaPadula. Secure Computer System: Uni�ed Exposition and Mul-

tics Interpretation. Technical Report MTR-2997, MITRE Corporation, March 1976.

Available as NTIS AD A023 588.

[CW87] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Security

Policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages

184{194, April 27-29 1987.

[DoD83] Department of Defense Trusted System Evaluation Criteria. Technical Report CSC-

STD-001-83, Department of Defense Computer Security Center, August 15 1983.

[DoD88] Security Requirements for Automated Information Systems. DoD Directive 5200.28,

March 21 1988.

[Gon93] Li Gong. Lower Bounds on Messages and Rounds for Network Authentication Proto-

cols. In Proceedings of the First ACM Conference on Computer and Communications

Security, pages 26{37. Association for Computing Machinery, November 1993.

[Gra93] J. W. Gray. On Analyzing the Bus-Contention Channel under Fuzzy Time. In Pro-

ceedings of the Computer Security Workshop VI. IEEE Computer Society Press, June

1993.

[ITS91] Information Technology Security Evaluation Criteria (ITSEC): Provisional Harmonized

Criteria. Document COM(90)314, O�ce for the O�cial Publications of the European

Communities, June 1991.

[KM92] C. Kurak and J. McHugh. A Cautionary Note on Image Downgrading. In Proceedings

of the Eighth Annual Computer Security Applications Conference, pages 153{159. IEEE

Computer Society Press, Los Alamitos, California, 1992.

[LL85] Carl E. Landwehr and H. O. Lubbes. An Approach to Determining Computer Security

Requirements for Navy Systems. NRL Report 8897, Naval Research Laboratory, May

13 1985.

[Mil87] J. K. Millen. Covert Channel Capacity. In Proceedings of the 1987 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press, April 1987.

[Mil92] J. K. Millen. A Resource Allocation Model for Denial of Service. In 1992 Symposium on

Research in Security and Privacy, pages 137{147. IEEE Computer Society Press, May

1992.

[Mil94] J. K. Millen. Denial of Service: A Perspective. In Proceedings of DCCA4, 1994. to

appear.

[Mos91] Ira Moskowitz. Variable Noise E�ects Upon a Simple Timing Channel. In Proceedings

of the 1991 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,

May 1991.



[Nat91] National Computer Security Center. Trusted Database Management System Interpreta-

tion of the Trusted Computer System Evaluation Criteria, April 1991.

[Pot94] Garrell Pottinger. Proof Requirements in the Orange Book: Origins, Implementation,

and Implications. Technical report, Mathematical Sciences Institute, Cornell University,

Feb. 11 1994.

[SBT94] D. F. Sterne, G. S. Benson, and H. Tajali. Redrawing the Security Perimeter of a

Trusted System. In Proceedings of the 7th Computer Security Foundations Workshop,

pages 162{174. IEEE Computer Society Press, June 14-16 1994.

[SD86] R. R. Schell and D. E. Denning. Integrity in trusted database systems. In Proceedings

of the National Computer Security Conference, pages 30{36. NCSC, September 15-18

1986.

[SS87] W. R. Shockley and R. R. Schell. TCB Subsets for Incremental Evaluation. In Proceed-

ings of the Third Aerospace Computer Security Conference, pages 131{139, Orlando,

FL, December 1987.

[TG88] C.-R. Tsai and V. D. Gligor. A Bandwidth Computation Model for Covert Storing

Channels and its Application. In Proceedings of the 1988 IEEE Symposium on Security

and Privacy. IEEE Computer Society Press, April 1988.

[YG90] C.-F. Yu and V. D. Gligor. A Speci�cation and Veri�cation Method for Preventing

Denial of Service. IEEE Transactions on Software Engineering, 16(6):581{592, June

1990.


